
What is Slamdunk? 
 
Slamdunk is the grand unified design pattern and coding template for user interfaces. 
 
First, a little history... 
 
Way back in 1968, one of the founders of Computer Science, Edsger Dijkstra, wrote an infamous 
technical paper known today as "Goto Statement Considered Harmful". This ignited a firestorm 
in the software world that lasted for about a decade. What this paper said, and what Dijkstra 
meant by it, is still debated in some circles. But it had an effect on how people write software 
that persists to this day. 
 
In the early days of computing, CPU main memory was a scarce and valuable commodity. If you 
didn't live and work in those times, it may be hard for you to understand just how scarce and 
valuable it was. Of course, programs in those days had to work, just as they do now, and getting 
your software to work was and still is the primary goal. But an equally important skill for a 
software developer at that time was the ability to make your program fit inside the computer. 
This resulted in coding techniques that would be considered insane today. And the reason they 
would be considered insane today is because of Dijkstra's paper. 
 
The practical consequence of "Goto Statement Considered Harmful" was an insistence that 
program flow be limited to: 1) function calls, 2) decision trees, and 3) purely nested loops. What 
you weren't allowed to do anymore was use goto just anywhere it might seem convenient, and 
better not to use it at all. This was a big deal. Many experienced and highly competent 
programmers revolted at this requirement, asserting that real software could not be written that 
way. Just a few years before, that was probably true. But things were changing. Memory was 
cheaper, a little more plentiful, and not quite so precious. Also, people started to notice this 
new structured programming didn't often cost all that much more memory than unstructured 
techniques, which were hard to write, understand, and debug. Straightforward simplicity had 
become more important than mere size, and functionality never suffered. This had increasingly 
significant economic effects as the relative costs of computers and programmers inverted over 
time. Eventually, pretty much everyone decided to get on board. These days, some programming 
languages don't even have a goto statement. In those that do, it is rarely used, and used only in 
very limited ways when it is used. Breaking this rule will get you in trouble in most development 
shops, and with good reason. 
 
The Goto Wars were an important milestone in the history of software development, largely 
forgotten today. We have never seen anything like it in UI construction. But maybe we should. 
 

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Typical UI Code Considered Harmful 
 
A common sales pitch for UI Component sets and development tools is "You can do anything you 
want!" How often have you heard this line yourself? It sounds appealing. What could go wrong? 
Demonstrations of UI tools make a point of connecting anything to anything and making that 
look useful, desirable, sexy. We might call this Bordello Morality. 
 

 
This is similar to the power offered by the goto statement: go anywhere, anytime, and do 
anything when you get there. But we learned from painful experience that this kind of thinking is 
not a good idea. It all too often results in wasted time, unexplainable expenses, and incurable 
bugs. One of life's hard lessons is that some restraint, maybe even a lot of it, results in more 
happiness overall. 
 
Restraint is what we don't find in much UI code. We are talking about desktop UIs here. Web UIs 
have their own vast array of problems, and the subject of this article is relevant to some of them. 
The subject of this article is central to desktop UIs. 
 

?

*

Some Typical UI Structure

Is this supposed to be a joke? Sadly, it isn't.



If we are to develop a helpful kind of restraint in UI construction, what form should it take? Here 
is the recipe: 
 

What Your Professor Said Is Still True 
 
The first order of business in UI construction is to separate the Model from the View. If you ever 
took a class with a title anything like "Software Engineering", you heard this from someone, 
somewhere, sometime. So everybody knows this. What I don't often see is developers following 
this advice. The usual approach is to create some subclass of Panel and dump everything 
having to do with the problem at hand into it. Then, when it turns out the problem is bigger than 
you thought it was, probably interacting with things outside the scope of your initial solution, or 
even if you just want to change the existing UI, you have to go back and re-engineer the whole 
thing. Either that, or your new code invades your old code, making connections to anything that 
might conveniently deal with your new concerns. Here, the similarity to the old goto issue 
becomes more clear. The result is code that only you can understand. And if you go away and 
come back to look at this code a year later, or maybe even a week later, you may discover that 
you don't understand it either. This is not acceptable. 
 
So let's revisit that Model/View thing your professor told you about. 
 
A Model does two things: it 1) holds Model state, and 2) implements Model behavior. In other 
words, it does everything your application is supposed to do (query a database, operate a 
process, etc.), but it is not concerned with how it appears on the screen. A good Model may 
make allowances for a good View, but this is incidental to Model design. 
 
A View does two things: it 1) displays Model state, and 2) invokes Model behavior. And 
that's all it does. 
 
Once we understand the Model/View distinction and decide firmly to follow this good advice, we 
are ready to take the next step. 
 
Now... Slamdunk 
 
The essence of the Slamdunk UI Design Pattern is this: 
 
     For every View, there is one and only one Model. 
 
It may not seem like much, but this is a big deal. Many experienced and highly competent 
programmers revolt at this requirement, much as they did when goto was banished from polite 
conversation. It seems like an unnecessary, maybe even crippling constraint. But you will change 
your mind. Slamdunk brings a tremendous amount of order to your UI code. It also enables 
powerful constructions you probably never envisioned because, without the Slamdunk constraint, 
there is not any effective way to envision them, nor is there any reason to try. 



 

 
The look on a developer's face when he first really understands Slamdunk. No kidding. 
 
Whenever I first describe Slamdunk to a new UI team, one or two members might understand its 
importance right away, but this is rare. Some go along with it simply because I am The Boss and 
I said so. Others are not so willing. One young fellow went over my head to insist to my manager 
that "this Slamdunk thing" was suicide. Whatever their initial reactions, everyone eventually 
accepts and embraces it. Even the kid who thought it was suicide did. That's because it works. 
Bordello Morality doesn't. 
 
Someone always asks, "What if my UI really does display two or more different Models?" That's 
a fair question. If you encounter this (and you will), then create another Model class that 
encapsulates the submodels, and use this encapsulating Model as the single Model for your View. 
While this may seem like extra work now, it saves more work later on, and also makes it possible 
to do other good things you haven't seen yet. 
 
There are two forms of Slamdunk: weak and strong. Don't infer too much from these labels. The 
weak form is not bad, just not as powerful as the strong form. Most people find the weak form 
easy enough to digest. Many people find the strong form frightening, maybe even terrifying... at 
first. You can implement the weak form today and reap substantial benefits in your current 
project. The strong form requires a supporting library that is easy to use but not easy to construct. 
We have such a library here at brising.com, but you might prefer to use the weak form for a 
while as you become accustomed to this kind of thinking. 
 



Slamdunk: The Weak Form 
 
Before you put anything up on the screen, you must first have a Model. Perhaps you think you 
can put this off until later. You can't. Go design, build, and thoroughly debug your Model now. 
Then you can come back and build a View for it. 
 
When you have your Model well in hand, sketch out how you want it to appear on the screen. 
Then 1) create, 2) configure, and 3) connect your UI Components. Where to do this? You might 
think this is the place to make a subclass of Panel. That isn't the worst choice you could make, 
but it isn't the best, either. Instead, create a new object called a Coordinator (No, don't call it 
a Controller). Its job is to create, configure, and connect your UI Components. In the weak form 
of Slamdunk, the UI Component is always a Panel, which is created in the Coordinator's 
constructor. Then create, configure, and connect whatever Components you need inside 
that Panel. Set up any Component event handlers now, where it is the Coordinator that handles 
the events. 
 

 
Now, create a method in your Coordinator that attaches the Model. The traditional name for this 
method is setValue(Model). This tradition is worth following. Be sure 
that every Coordinator you ever build has this same method, because most of the payoff in using 
Slamdunk happens right here. Of course, the best way to ensure you have this method is to 
subclass an abstract Coordinator class. The structure of the setValue(Model) method is not 
trivial, but it is arranged so your implementation always contains trivial code. This is described 
in detail in a separate article. 
 

PanelCoordinatorModel

The weak form of the Slamdunk UI Pattern

http://abell.verio.com/MVC.html
http://abell.verio.com/slamcode.html


 
There is something important to notice about this picture: Slamdunk is a fractal pattern. In any 
realistic example, it probably exists at many different levels, always essentially the same. At any 
given level, you can apply the same kind of thinking, the same kind of coding, and the same kind 
of tooling as at any other level. 
 
Slamdunk: The Strong Form 
 
After you have built several weak-form Coordinators, you will become impatient. A lot of 
common code appears where you create, configure, and connect Components. You will want to 
write this code one last time and put it somewhere so you won't have to look at it again. This 
means you are ready for the strong form of Slamdunk. 
 
Instead of thinking at the level of Panels, think about all of the Components in your Component 
set. Think about having a distinct Coordinator class for every one of them. When building screen 
layouts in this environment, you don't instantiate Components. You instantiate the Coordinators 
for those Components. When the Coordinator's constructor returns, its Component exists, fully 
configured, ready to work. All of its event handling code is already in place, hooked up, and 
ready to respond in ways that are well understood and fully debugged. Those annoying snippets 
of orphan code you have to write in most GUI builders? They go here, written in a way that 
works for all situations. Can we do that? Yes. 
 
Another thing you will notice about weak-form Coordinators: their code differs in the presence 
of specific getters and setters on the Model. If we can extract these getters and setters and invoke 
them in some indirect way, more boilerplate code disappears. The object that does this is a 
Broker, which also has a setValue(Model) method. If you think you're getting a whiff of 
that Object-Oriented magic you hear about from time to time, yes, you're in the middle of it now. 
This is where Slamdunk starts to compound upon itself, resulting in a whole that is greater than 
the sum of its parts. 

Composition of Weak Slamdunk Assemblies



 

 
There are about a half-dozen kinds of Brokers commonly used in practice. They are instantiated 
and configured, not subclassed. You can make your own unique Broker types if you want to, but 
you probably won't. Each kind of Broker delivers a Model in a different way. Note that there can 
be a chain of Brokers between the Coordinator and the Model. 
 
So now we're saying this: 
 
     A Coordinator creates, configures, and connects one UI Component for one Model. 
     A Broker delivers one Model to a Coordinator. 
 
Consider the possibility that the abstract class Coordinator is a subclass of the abstract class 
Broker, which is itself a subclass of the abstract class Model. Now consider the possibility that a 
UI is exclusively a tree of Brokers and Coordinators. 
 

 
Wait a minute... Does that really work? Yes, it does. It works so well that building UIs in a 
programming language like Java becomes pretty much a waste of time. Strong Slamdunk UIs are 
described in a terse schematic language with high semantic density. Is it XML? It could be. But 
Lisp S-expressions are more useful, and easier to write, too. Ordinary mortal programmers can 
learn this stuff in short order. If the word Lisp strikes fear into their hearts, just don't tell them 
that's what they're doing. And if you have a deeper understanding and command of Lisp, you can 

ComponentCoordinatorModel

The strong form of the Slamdunk UI Pattern

Broker...

Composition of Strong Slamdunk Assemblies



easily do useful things far beyond the scope of this article. Does this mean you're now 
programming your UI in Lisp? Not really, or at least not much. In the course of normal 
Slamdunking, you won't write any CARs or CDRs. Don't think of it as programming at all. 
Instead, describe your UI in this convenient notation. If that notation also happens to be 
executable, is that a problem? Many runtime environments have Lisp add-ons these days, so you 
can Lisp when it's helpful, and speak your regular language for everything else. 
 
Let's draw a slightly simpler form of the diagram shown above. This is how strong Slamdunk 
UIs are designed. This kind of schematic is called a Windchime Diagram. Imagine the wind is 
blowing strongly from left to right, and the name will make sense. 

 
This diagram can then be translated into the following form: 
 
(bc (A (B)(C))(cp (lg)(bi "B" (cw))(bi "C" (cw)))) 
 
If you have a Slamdunk library from brising.com, this little bit of text creates, configures, 
and connects a UI that is visible and works. With only a few minutes of education, this code will 
make infinite sense to you and your design collaborators. If you were thinking you were then 
supposed to translate this back into your favorite programming language, or that some tool 
generates such code for you, you have missed the point. This is the code you deploy. 
 
How Do I Start This Thing? 
 
A common stumbling block when learning Slamdunk is the question "Who 
invokes setValue(Model)?" This is usually obvious when you need to do it, but maybe not 
before then. Almost always, it happens inside another 
Coordinator's setValue(Model) method. Occasionally, it happens elsewhere. So how do you 
start an application? Here's how: 
 

A Slamdunk Windchime Diagram



1) In your main() routine, instantiate your top-level Model. Don't have one? Shame on you! 
Go back and re-engineer your code until you have a clearly defined top-level Model. If it 
operates a process or talks to a client/server IO engine, start that now. 
2) Instantiate the Coordinator that goes with your top-level Model. Don't have one? Shame on 
you! We are writing Slamdunk here, which is all about Models and Coordinators. Go back and 
make one. 
3) Obtain your top-level Coordinator's Component, which is probably a Panel. Put that 
Component in a Window. 
4) Invoke oCoordinator.setValue(oModel). 
 
Your application is now visible and running. All Slamdunk applications start this way. 
 
Why Do This? 
 
Here are several important consequences of building UIs with Slamdunk: 
 
1) There is no Bordello Morality here. Every Slamdunk UI is a simple tree. There are no 
strange connections to decipher and understand. If you follow the coding template, most of your 
code-structuring decisions are already made for you, so you don't waste time inventing things 
that don't need inventing. An ever-increasing portion of your life is spent writing minor 
variations of the expression oCoordinator.setValue(oModel). And when you go on 
vacation or get hit by a truck, other Slamdunk-literate developers will already know everything 
they need to know about how your UI is structured and where things belong. 
 
There is what some might consider a downside to this. On one Slamdunk UI team I managed, a 
senior developer quit after a few weeks. At his exit interview, he was asked why he was leaving. 
His response: "Slamdunk took all the fun out of my job." That may be true. The other thing that 
was true: as soon as we completed our strong Slamdunk library, we took UI design and 
development away from R&D and put it into the hands of Field Engineers, who did it 
successfully while seated in front of impatient customers. Design and development times 
for deployable UIs went from months to minutes. What the smart developer will learn from this 
is that all the fun and interesting code found in UI projects is 
really complicated and unnecessary. Slamdunk is a simple recipe that never fails. 
 
2) You can test it. Any Slamdunk Model-[Broker...]-Coordinator-Component assembly is a 
complete and closed system. For any Model in your application, you can instantiate a UI on it 
and test it completely in isolation. How? Reread How Do I Start This Thing? and recognize that 
the recipe works for any Model, not just the application top-level Model. 
 
3) You can build UI abstractions that actually work. Remember the fundamental rule of 
Slamdunk? For every View, there is one and only one Model. Because of this, a Slamdunk UI has 
properties beyond just being easier to write. How to make use of these properties is beyond the 
scope of this article, but in summary: Slamdunk-based applications often display real working 
UIs that no human being designed, and they are right. It is hard to overstate the payoff. 
 



Is There More to Know? 
 
Of course there is. But each next step is simple in its own way, bringing a new level of power to 
your development efforts. We can show you how. 
 
A Little More History 
 
The Slamdunk UI Design Pattern originated in machine control applications written in the 
Smalltalk language. At first, it was a coding pattern that developers learned to hammer out by 
hand. It was in that body of programmers that Slamdunk acquired its name. In 1995, Steven T 
Abell, then at ParcPlace, learned this pattern and firmed it up into a bona fide framework that is 
still used in the active Smalltalk community. Later, he translated it into Java, in which the first 
implementation of strong Slamdunk was built for David Taylor's Enterprise Engines project.

 
© 2018 brising.com 

https://www.amazon.com/s/url=search-alias&field-keywords=david+taylor+object+oriented

