
Stop Mowing The Lawn!
A Better Way to Understand Expressions

by Steven T Abell
Software Designer

© 2022 brising.com

 One of the cornerstones of math
education is the Lawnmower Algorithm. The
Lawnmower has been around for a long time.
You learned it. You teach it. Some of your
students get it. Some think they get it. Some
give up trying to get it.
 It’s great when they get it. But there
are a lot of failures: some outright egregious
failures, with more near misses that don’t
show themselves until later. And yet no one
can afford to fail at this. If you can’t Mow
The Lawn correctly and reliably, you can’t
read or write math beyond a very elementary
level.
 If you don’t know what all this talk
about lawnmowers is about, you’ll recognize
it in just a moment. Here’s how it goes:
 You have let your lawn grow wild for
a long time, and now you need to mow it
before the Homeowners Association sues you.
But the grass is very tall. If you simply push
your lawnmower into this mess, it will choke
and stall. Instead of doing that, fiddle with the
mower’s controls to set the cutting height up
as far as it will go. Now push the mower over
the entire lawn, cutting off just the tops of the

grass. Then lower your mower a notch and do
it again, making the grass a little shorter this
time. Do this again and again until you
finally get down to ground level. Now you are
finished.
 In your classroom, you may know the
Lawnmower Algorithm by a different name,
or use a different analogy (or no analogy at
all) to explain it. But by this name or any
other, this is how we teach our students to
read expressions. This is how you learned it
when you were in school. It is how your
grandparents learned it. It is probably how
their grandparents learned it, too.
 The Lawnmower Algorithm is
augmented by the acronym PEMDAS
(Parentheses, Exponents, Multiplication,
Division, Addition, Subtraction), or by the
infamous mnemonic “Please Excuse My
Dear Aunt Sally”, where each letter
represents a different level of Mowing The
Lawn. Except of course that isn’t really true.
It is really more like PE{MD}{AS}. Except
that isn’t really true either. How many of your
students really know how PEMDAS works?
How many of their parents or siblings or
future co-workers do? That number is smaller
than we’d like.
 Most of my working life was deep in
the trenches of Silicon Valley as a software
developer. My first real programming
language was FORTRAN, learned in Math 29
at UC Davis in 1975. A few years later I
taught Math 19, which was BASIC. In either
of these languages, and in many others, here
is the entire lecture in which expressions are
explained: “It’s just like what you learned
back in Algebra I.” And if you allow for a few
slightly different symbols, it is. Except that it
isn’t.
 Most programming languages are
taught this way. But no programming
language works this way. And yes, it matters.

A different version of this article appeared in
The ComMuniCator, a publication of the
California Mathematics Council, Volume 47
Number 1, September 2022. The content here is
similar, subject to different editorial policies.
Thanks to CMC for publication in their journal.
Click here to download the PowerPoint slides:
http://www.brising.com/OperatorPrecedenceParser.pptx

http://www.brising.com/OperatorPrecedenceParser.pptx
http://brising.com

 Because I have been around so long, I
usually end up being the unofficial mentor in
a development team. Other engineers come to
me with obscure questions about their code.
Several times, I have had to explain to people
what a programming language compiler does
when it reads an expression. The usual
response is: “No, no, Steve, you don’t
understand: that’s not how it works. It’s like
we learned in Algebra class. You know… the
Lawnmower Algorithm” or whatever name
they were given for the process. Then I have
to explain to them: “No, no, you don’t
understand: that’s not how it works.” Maybe
their teachers didn’t know the difference. Or
maybe they did know but didn’t think it
mattered. So here we are with a real-world
problem, with these engineers, mostly
college-degreed software professionals, who
don’t know what’s happening or how to fix it.
 What’s really shocking is that I know
some of these people had a class in compiler
construction at some point. They should have
known better. And yet it is the Lawnmower
Algorithm they learned forever ago that is
stuck in their heads.
 The actual behavior of actual
computers actually matters to an increasingly
large portion of the population, and not just
professional programmers. So we have to root
this thing out.

 Let’s start by looking at something
familiar, intentionally pointing out the
obvious. Then we’ll look at other things that
aren’t so obvious.
 Think about this expression and how
to evaluate it:
 a*b+c*d+e*f

Using the Lawnmower Algorithm:
 1) Multiply a*b.
 2) Multiply c*d.
 3) Multiply e*f.
 4) Add results from Steps 1 and 2.
 5) Add results from Steps 4 and 3.

A compiler does it differently:
 1) Multiply a*b.
 2) Multiply c*d.
 3) Add results from Steps 1 and 2.
 4) Multiply e*f.
 5) Add results from Steps 3 and 4.

To show this more simply, I have numbered
the operators in their order of execution, first
as a lawnmower does it, then as a compiler
does it.
 a*b+c*d+e*f
 1 4 2 5 3 lawnmower
 1 3 2 5 4 compiler

Here is an example using parentheses:
 a*b*(c*d-(e+f))
 4 5 2 3 1 lawnmower
 1 5 2 4 3 compiler

Troublesome examples are easy to find. It is
harder to find examples that don’t diverge
like this.
 What about evaluation? Are the results
of these two pathways through the operators
the same or different? If you are doing
algebra, the results are always the same.
(Feeling relieved? Wait a bit.) If you are
working with computers, the results might be
different. (Are you nervous yet? Good.)
 Why are the results different
sometimes? Because algebra is stateless. But
real-world computer software, while entirely
deterministic, can also be state-dependent. To
show one example, I will introduce an idea
that, while simple, might still be new to you.

A stream is a programming language
artifact used in expressions. Streams can be
written using traditional function syntax,
although most languages write them
differently. A stream’s distinctive feature is
that it delivers the next element in a sequence
on demand. If a stream s contains the
sequence (2, 4, 6, 8) and n is the function-like
request for the next element, successive
invocations of n(s) deliver those numbers in
that order, one number for each invocation of
n(s). The expression n(s) + n(s) + n(s) is
equivalent to 2 + 4 + 6 for that particular
stream s, but would have a different result for
streams containing other sequences. In this
example, the number 8 still waits in s, unused.

 Streams appear prominently in many
modern computer programs. Their use often
simplifies code significantly. But they also
have state, which is silently introduced into
your expression. A stream waiting to deliver
its first element is in a different state from
when it is waiting to deliver its second
element, etc.
 Now consider an example where the
stream s contains the sequence (8, 4, 2, 1).
Evaluate this:
 n(s)*(n(s)-n(s)/n(s))

What did you get? Using the Lawnmower
Algorithm, many educated people begin
inside the parentheses to obtain this:

 1*(8-4/2) = 6

Keeping precedence in mind, some insist it
must be:

 1*(2-8/4) = 0

But if you ask a compiler, the only entity
whose opinion matters in programming, the
result is:

 8*(4-2/1) = 16

If your programming language also allows
you to define operators (as you can in C++ or
Swift, for example), you can easily write code

that is yet more mysterious to lawnmowers.
And even if you are careful to write stateless
code, a simple everyday trip through your
debugger can be a mind-bending experience
if you have the wrong expectations.
 So knowing only how a compiler
understands expressions will not hurt you
when doing algebra. But knowing only how
to Mow The Lawn can hurt you when
programming, and it will be a complete
surprise to you when it does. If you only want
to teach or learn one way, which is the wiser
choice?

 Why don’t programming languages
work like you learned back in Algebra I?
Could they be made to do so?
 Yes, as a matter of fact, they could.
But they aren’t made that way, and they won’t
be, because that would be too hard.
 If you know how to program, even a
little bit, here is a challenge for you: take
what you know about evaluating expressions
as you teach your students how to do it and
code it up. Remember: you don’t get to use
other knowledge or personal discoveries
about how this could be done. It has to be
what you teach your students in class. Be sure
your program handles everything in the
PEMDAS stack. Is your exponentiation
operator left-associative or right-associative?
As extra credit, make it handle the unary
minus operator.
 If you are determined and careful, you
may eventually develop code that works for
all cases. But even if you do, you will hate
what you have created. That is some really
ugly code there. If you want to reply here that
I haven’t yet seen this code you haven’t yet
written, I will tell you: that doesn’t matter. I
know the problem. I know the code. It is ugly.
And here is something every good software
developer knows:

Code that is ugly is code that is wrong.
Period… end of story… doesn’t matter if it
works or not. It’s wrong! Ugly code is not
only about subjective aesthetics. Ugly code is
telling you something important about your
understanding of the problem. Be sure to
listen.

 There are other ways of reading
expressions that are objectively simpler than
Mowing The Lawn. That is why compilers
use them. So… why are we teaching this hard
Lawnmower stuff to our students?
 If the word compiler makes you
squeamish, relax. I could write a short article
telling you how to make a compiler, and you
would even think it’s kind of fun. But, better
than that, I made an illustrated PowerPoint
deck you can get by clicking here:
http://www.brising.com/OperatorPrecedenceParser.pptx

 There is no code in these slides. A few
simple diagrams make the process even more
clear than my short article would. Feel free to
use this deck in your classroom. Contact me if
you want to talk about it.
 The kind of compiler shown in the
slides is called an Operator Precedence
Parser. It is stunningly simple. Unlike the
Lawnmower, which has to read and modify
an expression multiple times, the Operator
Precedence Parser only has to read it once.
 If words are good and pictures are
better, what about interactive animations?

If you or your students want to have a
dynamic video game experience with
expressions, then look at DragginMath™ .
This iPad/iPhone app is on the App Store
now. Expression parsing is just the beginning
of what it can help you teach.

 Now that I have told you about this,
do I expect you to throw the Lawnmower in
the trash and make it go away by tomorrow?
Of course not. That thing has been with us for
a long time. The culture of math education
and curriculum development doesn’t often
turn so quickly, and the result can be
regrettable when it tries. But it will be better
if the Lawnmower goes away eventually. So I
want to put this idea into your head now and
see what good things you can do with it. Then
it will be true when some near-future class of
programmers is told “It’s just like what you
learned back in Algebra I,” and they won’t
struggle later with elementary problems they
didn’t know they could have. Better yet:
everyone will have a simpler way to read,
understand, and evaluate expressions.

http://www.brising.com/OperatorPrecedenceParser.pptx
https://brising.com/contact-us/
https://apps.apple.com/us/app/dragginmath/id1507473098

